adieu la france, bonjour le canada

So, I’m incredibly excited (and a little heartbroken!) to be finally leaving France and completing my full circle around the globe to end up back in North America. I’ll be starting as Asst. Professor in the Biology department at McGill University in Montreal this summer.

It’s been an amazing journey and my life has been so enriched by so many amazing friends and collaborators. I have been especially fortunate to have amazing supervisors that gave me the patience and time I needed to keep going in science despite life constantly getting in the way.

OLYMPUS DIGITAL CAMERA
In training for Canada..

I’m very excited about this next step. Quebec is a hub (epicentre? 🙂 for biodiversity science with hundreds of researcher doing cutting edge biodiversity research and key organisations such as the Quebec Centre for Biodiversity Science.

Plus, Montreal is quantifiably a super cool city, voted both the best city for students and having the coolest neighbourhood in the world. So come visit!

To students, I will be recruiting for Master and PhD projects soon, but feel free to contact me if you have something in mind..

 

 

 

 

 

 

 

A great surprise to end a rollercoaster year

 

To cap off a crazy year, it was a fabulous surprise to find out that we won a Research Prize for our nature paper- the La Recherche Prix 2017 for the Environment category. La Recherche is a popular science magazine (similar to the New Scientist). Thanks to La Recherche for a great honour and a lovely awards ceremony and cocktail. And the biggest surprise of all- W. Thuiller in a collared shirt!

Where in the world is the unprotected diversity? New paper out in Nature

cover_nature

 

 

 

 

 

 

 

 

natureimage1worldphylo-001.jpegThe world’s biodiversity is in crisis. Species are declining at an alarming rate. And this is happening at just the time we are really beginning to understand this diversity through an unprecedented cataloging and compiling of information. Data repositories are filled with hundreds of thousands of entries about species, where they live, how they live, and who they are related to. And this is only the beginning. New DNA-based surveys are exploding onto the scene and our ideas and understanding of biodiversity are improving everyday.

So when and how do we use this burgeoning knowledge of biodiversity in biodiversity conservation?

We take a stab at this question in our recent paper out in Nature by analysing the world’s bird and mammal diversity from a conservation perspective. We ask how much of the world’s bird and mammal diversity is currently protected and how much better we could do if protected areas were to be expanded. We consider diversity to be not only species, but also phylogenetic and functional diversity. The use of these types of diversity means we have a better chance of meeting big policy goals of preserving biodiversity that benefits humans and ecosystems than with a sole focus on species. Continue reading Where in the world is the unprotected diversity? New paper out in Nature

Climate change threatens eucalypt diversity

We have a new paper out in Nature Climate Change that combines Species Distribution Models (SDMs), climate change and phylogenetic diversity metrics. This is very exciting as it is the first paper from our PD working group.

screen-shot-2016-09-19-at-18-18-04

Some highlights:

-We explore the effect of climate change on various PD metrics (including endemism-based metrics) for all eucalypts across Australia. Eucalypts are stand dominants in many forests across the continent and are also of course inherently awesome.

-We present the first complete phylogenetic tree for eucalypts (657 species)

-We include SDMs for dispersal and no-dispersal scenarios for all species for the present and future projections (more on the models soon..)

-The results?  Overall, there is a loss of PD within cells as well as between cells- so an increasingly homogenous PD landscape. Rare, ancient lineages are the most impacted, and some areas, such as the Kimberley Region will likely be increasingly important refugia for PD. The southern coastline is an important reservoir of both ‘old’ and ‘young’ lineages. This distinction is important as we might value old and young lineages for different reasons from a conservation perspective.

See more here..

And ABC news article..

Also see post by Heini Kujala

And the press release

And even a song about it! 

 

 

screen-shot-2016-09-19-at-18-12-09

 

 

The tangled past of eucalypt communities

After a long road, that began with a comment, ‘Of course related eucalypts don’t coexist, most of them are distributed allopatrically, and if they do re-mix, they will hybridise anyway’..  followed by many years of field-work, lab work, running models, revisions, more revisions, even more revisions..  we came to the conclusion, that indeed, evolutionary history probably explains why closely related species don’t co-occur.

Ecology is also important. Species in plots tend to have similar trait values (especially specific leaf area). One cool thing about a model-based approach is that we can estimate how much different factors influence co-occurrence and we can detect interactions- e.g. similar species co-occur unless they hybridise. The negative effect of reproductive compatibility was nearly as strong as the positive effect of having similar traits.

See more here

Linking species distribution models (SDM) and phylogenies

PollockFigure1

When using phylogenies in spatial conservation prioritisation, we need to link the phylogeny with distribution data. Increasingly, distribution data is used to predict where species occur across the landscape using a species distribution model (SDM). SDMs are currently underused in conservation, but have great potential for a variety of applications from threatened species management to conservation planning. Our recent paper shows how to use SDMs with a phylogeny in spatial conservation planning (this method could also be used for a variety of applications linking phylogenies and SDMs).

An SDM models the response of a species to a set of predictor variables (usually environmental variables). The model can be extended across a landscape with a probability of occurrence of species in grid cells**. The external branches (tips) of the phylogeny correspond to a particular taxon (let’s assume we have a species-level tree). Therefore, each external branch can simply be the probability of that species occurring in each cell (a,b,c,e,f in figure above). Now, for the internal branches. Continue reading Linking species distribution models (SDM) and phylogenies